#WeKnowCybersecurity

Cybersecurity Blog of Fraunhofer AISEC

IoT Security
Felix Oberhansl

Fraunhofer AISEC commissioned by the German Federal Office for Information Security (BSI): New study on the synthesis of cryptographic hardware implementations

The study by Fraunhofer AISEC on the security of cryptographic hardware implementations focuses on physical attacks on hardware, such as side-channel attacks and fault attacks, as well as measures to defend against them. These protective mechanisms can potentially be compromised by optimizations in the chip design process. The study shows that protective measures should be integrated into complex design processes and taken into account in hardware design synthesis in order to be resilient to hardware attacks. The findings will help hardware designers to develop robust and secure chips.

Read Article »
Cybersecurity
Christian Banse

Faster detection and rectification of security vulnerabilities in software with CSAF

The Common Security Advisory Framework (CSAF) is a machine-readable format for security notices and plays a crucial role in implementing the security requirements of the Cyber Resilience Act (CRA): Security vulnerabilities can be detected and rectified faster by automatically creating and sharing security information. Fraunhofer AISEC has now published the software library »kotlin-csaf«, which implements the CSAF standard in the Kotlin programming language.

Read Article »
Cybersecurity
Immanuel Kunz

Privacy By Design: Integrating Privacy into the Software Development Life Cycle

As data breaches and privacy violations continue to make headlines, it is evident that mere reactive measures are not enough to protect personal data. Therefore, behind every privacy-aware organization lies an established software engineering process that systematically includes privacy engineering activities. Such activities include the selection of privacy-enhancing technologies, the analysis of potential privacy threats, as well as the continuous re-evaluation of privacy risks at runtime.
In this blog post, we give an overview of some of these activities which help your organization to build and operate privacy-friendly software by design. In doing so, we focus on risk-based privacy engineering as the driver for »Privacy by Design«.

Read Article »
Headerbild zum Blogartikel "Neue Studie zu Laser-basiertem Fehlerangriff auf XMSS" im Cybersecurityblog des Fraunhofer AISEC
Cryptography
Silvan Streit

Fraunhofer AISEC commissioned by the German Federal Office for Information Security (BSI): new study of laser-based fault attacks on XMSS

To ensure the security of embedded systems, the integrity and authenticity of the software must be verified, for example through signatures. However, targeted hardware attacks enable malware to be used to take over the system. What risks are modern cryptographic implementations exposed to? What countermeasures need to be taken? To answer these questions, Fraunhofer AISEC was commissioned by the German Federal Office for Information Security (BSI) to carry out a study of laser-based fault attacks on XMSS. The focus is on a hash-based, quantum-secure scheme for creating and verifying signatures based on the Winternitz One-Time-Signature (WOTS) scheme.

Read Article »
Quantum Computing
Kilian Tscharke

Anomaly Detection with Quantum Machine Learning – Identifying Cybersecurity Issues in Datasets

Since the release of ChatGPT, the popularity of Machine Learning (ML) has grown immensely. Besides Natural Language Processing (NLP) anomaly detection is an important branch of data analysis whose goal is to identify observations or events that deviate from the rest of the data. At Fraunhofer AISEC, cybersecurity experts explore Quantum Machine Learning methods for anomaly detection. One approach is based on the classification of quantum matter while a second method uses a type of Quantum Support Vector Machine with a kernel that is calculated on a quantum computer. This blog post explains the fundamentals of anomaly detection and shows the two approaches being pursued by the Quantum Security Technologies group at Fraunhofer AISEC.

Read Article »
‚Industrial Security‘
Nico Haas

Towards Automated Cloud Security Certification

Obtaining a cloud security certification requires a lot of preparation time, which mainly involves manual processes that are prone to error. In other words, several employees cannot perform their usual duties during an audit preparation. Our Clouditor tool aims to improve this process by making audit preparations more systematic and automatable. This makes it possible to continuously monitor cloud services and check their compliance with a cloud security catalog such as BSI C5[1], EUCS[2], or the CCM[3].

Read Article »
‚Industrial Security‘
Tobias Specht

gallia – An Extendable Pentesting Framework

gallia is an extendable pentesting framework with the focus on the automotive domain, developed by Fraunhofer AISEC under the Apache 2.0 license. The scope of the toolchain is conducting penetration tests from a single ECU up to whole cars. Currently, the main focus lies on the UDS interface but is not limited to it. Acting as a generic interface, the logging functionality implements reproducible tests and enables post-processing tasks.
The following blog post introduces gallia’s architecture, its plugin interface, and its intended use case. The post covers the interaction between its components and shows how gallia can be extended for other use cases.

Read Article »
Mobile Security
Lawrence Dean

Android App Link Risks

Android App Links enable linking web content to mobile apps. The provided systems have been shown to have several issues, discovered by Tang et al. back in 2020, primarily link hijacking by three different means. Throughout the years there has been little information on the state of these issues, whether they were fixed and when. This post aims to provide information on exactly that.

Read Article »
Cryptography
Maximilian Richter

A (somewhat) gentle introduction to lattice-based post-quantum cryptography

In recent years, significant progress in researching and building quantum computers has been made. A fully-fledged quantum computer would be able to efficiently solve a distinct set of mathematical problems like integer factorization and the discrete logarithm, which are the basis for a wide range of cryptographic schemes. In 2016, NIST announced an open competition with the goal of finding and standardizing suitable algorithms for quantum-resistant cryptography. The standardization effort by NIST is aimed at post-quantum secure KEMs and digital signatures. In this article, two of the to-be-standardized algorithms, Kyber and Dilithium, are presented and some of their mathematical details are outlined. Both algorithms are based on so-called lattices and the thereupon constructed »Learning with Errors«, which we will get to know in the following.

Read Article »
Trusted Artificial Intelligence
Claudia Eckert

ChatGPT — the hot new tool for hackers?

ChatGPT is the AI software that supposedly does it all: It’s expected to compose newspaper articles and write theses — or program malware. Is ChatGPT developing into a new tool for hackers and cyber criminals that makes it even easier for them to create malware? Institute director Prof. Dr. Claudia Eckert and AI expert Dr. Nicolas Müller give their opinion on the potential threat to digital security posed by ChatGPT.

Read Article »

Most Popular

Never want to miss a post?

Please submit your e-mail address to be notified about new blog posts.
 
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.

* Mandatory

* Mandatory

By filling out the form you accept our privacy policy.